Dynamic Debug

Jason Baron
Red Hat

jbaron@redhat .com

Abstract

The kernel is sprinkled with debug statements that are
only available by individually re-compiling the various
subsystems of the kernel. In addition, each subsys-
tem has its own rules and methods for expressing these
debug statements - dprintk (), DEBUGP (), pr_
debug (), etc. Dynamic debug, introduced in ker-
nel 2.6.28, organizes these debug statements and makes
them available at run-time. Statements can be enabled
on an individual basis, or via higher level organizations
such as per-module. Dynamic debug can be thought of
as a verbose mode for the kernel. We explore the design,
usage, and performance impact of this new feature. We
also highlight issues that have been debugged with this
methodology and future work.

1 Introduction

The kernel contains many debug statements. In kernel
2.6.29 there are 3058 pr_debug () calls, 3158 dev__
dbg () calls, 5618 dprintk () calls, 206 DEBUGP ()
calls, and countless additional debugging statements.
Some of these statements are activated by defining
DEBUG in the corresponding .c files, while others are
activated by enabling subsystem specific configuration
parameters. Some subsystems have developed sophisti-
cated debug statement frameworks, allowing fine grain
control via bit flags and debug levels. Thus, when a
problem occurs that requires additional debugging infor-
mation, a kernel would typically need to be re-compiled
in order to obtain this additional debugging information.

According to Linux Device Drivers, “The most common
debugging technique is monitoring, which in applica-
tions programming is done by calling printf at suitable
points. When you are debugging kernel code, you can
accomplish the same goal with printk”[4]. Many, if not
most user space programs have a verbose mode. So,
why doesn’t the kernel have such a mode?

Really, the kernel does already have such a mode.
We currently label printk messages, from most severe,
KERN_EMERG, to least severe, KERN_DEBUG. Thus, a
printk of level KERN_DEBUG already exists. Why don’t
we simply convert the 10,000 or so debug statements
previously mentioned, to printks of level KERN_DEBUG
and be done with it?

First, enabling all those debug statements would clutter
up the logs. These debug statements are often found
in high frequency code paths, and thus would make
noise to signal ratio of the logs rather high. Second,
even when a printk message doesn’t make its way to the
console and/or the system logs, we still ‘render’ every
printk in the kernel, which is an expensive operation.
In ‘rendering’ a printk, we format the messages into a
buffer with locks held and irgs disabled. In fact, we
saw an 86% tbench performance degradation, when en-
abling all the debug statements, but not logging any of
the messages to the system logs or console. Thus, there
is an enormous cost associated with simply turning these
messages into printk statements of level KERN_DEBUG.

Dynamic debug addresses these two core concerns. The
verbosity is tackled using a unique language, which al-
lows expression for fine grain control of each debug
statement, while also permitting coarser control, using
for example, per-module enabling. This control lan-
guage was originally developed by Greg Banks at SGI
and was incorporated into dynamic debug[1]. The run-
time performance concerns are addressed while making
use of a bloom filter[2].

There has been a lot of work recently in the gen-
eral area of kernel tracing. Ftrace[6], LTTng[5], and
Systemtap[3] can all be used to trace the kernel. We
view dynamic debug as a complementary technology
that can be used in conjunction with these other tools.
There may also be ways for dynamic debug to leverage
and/or combine with some of these tools, which we will
explore.

e 30 o

40 e Dynamic Debug

In the next section, we will look at the implementation
of dynamic debug. We will then look at its usage and
some examples. Next, we will analyze the impact of
dynamic debug in terms of its size and performance.
We then introduce a subtle variation on dynamic debug
which can handle more complex debugging statements.
Finally, we conclude by commenting on the organiza-
tion of kernel debug statements, and suggesting areas
for future work.

2 Implementation

As mentioned, the two central goals of the implemen-
tation are controlling what ends up in the system logs
or filtering, and efficiency or minimal run-time cost.
The initial implementation focused on two functions -
pr_debug and dev_dbg. These functions are de-
fined centrally, thus, ‘overwriting’ their definition was
contained to two source files.

We then associate meta data with each debug statement.
This meta data records the containing .c file, line num-
ber, containing module, and associated format string.
This information enables the user to understand and
control which statements are enabled. The size of the
meta data is then proportional to information stored for
each debug statement and the number of debug state-
ments. We explore the meta data associated with each
debug statement, and the run-time control, in the follow-
ing two sections entitled ‘data structures’, and ‘bloom
filters’ respectively.

2.1 Data Structures

We hook into the pr_debug macro with some simple
macro magic. Prior, to the introduction of dynamic de-
bug we had:

#ifdef DEBUG

#define pr_debug(fmt, arg...) \
printk (KERN_DEBUG fmt, ##arg)

felse

#define pr_debug(fmt, arg...) \

({ if (0) printk (KERN_DEBUG fmt, ##arg); 0; })
#endif

We re-define this construct as follows:

#if defined (DEBUG)
#define pr_debug(fmt, ...) \

printk (KERN_DEBUG pr_fmt (fmt), ##__VA_ARGS_)
#elif defined (CONFIG_DYNAMIC_DEBUG)

#define pr_debug(fmt, ...) do { \
dynamic_pr_debug (fmt, ##__VA_ARGS__); \
} while (0)
#else
#define pr_debug(fmt, ...) \
({ 1f (0) printk (KERN_DEBUG pr_fmt (fmt),
##__VA_ARGS__); 0; })
#endif

Thus, if DEBUG is defined, we continue to get an in-
lined printk statement, while no code is generated when
DEBUG is not defined. The new case that we have intro-
duced results from defining the new configuration pa-
rameter CONFIG_DYNAMIC_DEBUG. When this con-
figuration parameter is defined, we hook into the new
dynamic debug code. Note, that DEBUG takes prece-
dence over CONFIG_DYNAMIC_DEBRUG. In this way,
code that defines DEBUG continues to work as was pre-
viously expected. The dev_dbg () hook is imple-
mented in a similar manner.

The dynamic_pr_debug () macro expands to store
debug statement data in the struct _ddebug data
structure, which follows.

struct _ddebug {
/
* These fields are used to drive the user
* interface for selecting and displaying
* debug callsites.
*/
const char *modname;
const char xfunction;
const char xfilename;
const char xformat;
char primary_hash;
char secondary_hash;
unsigned int lineno:24;
/%
* The flags field controls the behaviour
* at the callsite. The bits here are
* changed dynamically when the user
* writes commands to
% <debugfs>/dynamic_debug/control
*/
#define _DPRINTK_FLAGS_PRINT (1<<0)
#define _DPRINTK_FLAGS_DEFAULT 0
unsigned int flags:8;
} __attribute__ ((aligned(8)));

The modname, function, filename and lineno fields
are populated using the C code definitions KBUILD__
MODNAME, _ func_ , _ FILE_ , and _ LINE_
_, respectively. The format field is filled using the
supplied in format string. The primary_hash and
secondary_hash fields are explained in subsequent

2009 Linux Symposium e 41

bloom filter section. Finally, the flags field is used as a
per-call site control variable.

Thus, the st ruct _ddebug data structure is 40 bytes
in size. With a combined 6,000 call sites for pr_debug
and dev_dbg, that amounts to 23k(6000%40) in addi-
tion to the size of associated strings. We share results of
the kernel image size increases in the results section.

When the kernel boots or as new modules are inserted
and removed we create a new struct ddebug_
table structure for each logically module, which fol-
lows.

struct ddebug_table {
struct list_head link;
char xmod_name;
unsigned int num_ddebugs;
unsigned int num_enabled;
struct _ddebug =xddebugs;
}i

The pointer to the _ddebugs structures which are as-
sociated with a particular module are then assigned to
the _ddebug field of the associated ddebug_table
data structure. The ddebug_table structures are then
linked together in a linked list. Thus, using this list we
can easily look up entries and display them. A linked
list works fine since looking up these entries when set-
ting values, is not a hot path.

2.2 Bloom Filter

We associate two hash values with each instrumented
debug statement. Both hashes are in the range 0-
64. These are stored in the primary_hash and
secondary_hash fields of the _ddebug structure.
We use the djb2 and the r5 hash algorithms. The input to
the hash function is the Linux source code directory and
the module name. Thus, modules of the same name that
are located in different source directories likely have dif-
ferent hash values. Thus, hash bits ‘n’ and ‘m’ are asso-
ciated with each debug statement.

Two global variables of type long long are also in-
troduced. They are dynamic_debug_enabled and
dynamic_debug_enabled2. When we wish to
enable a debug statement, we set bit ‘n’ and ‘m’ in
the global variables dynamic_debug_enabled and

dynamic_debug_enabled2 respectively. Thus,
each debug statement is conditioned on having bits ‘n’
and ‘m’ set in the global variables dynamic_debug__
enabled and dynamic_debug_enabled2 re-
spectively. This is a variation on a bloom filter[2]. There
can be false positives, and thus we use the f1ags field
of the struct _ddebug field as a third, and defini-
tive check before calling into the associated printk state-
ment.

Thus, the pseudo-code for the above described case is:

bitl = hashl (kernel path + module name)
bit2 = hash2(kernel path + module name)
if (bitl & dynamic_debug_enabled &&
bit2 & dynamic_debug_enabled &&
_ddebug field is set)
(do the printk)

While there may be more complex implementation
which involve live code patching, such as the immediate
variable work, we find this implementation to be a good
trade off between complexity and speed. Notice we have
no locking or synchronization of any kind. Thus in the
off case we expect to execute only a couple of additional
instructions, and because we are relying only two global
variables, we expect the code to exhibit good caching
property. We can also further tweak the properties of
the bloom filter by creating additional levels of hashing.
Notice we could also fold the hashing into one global
variable as well.

Next we turn to hash collisions. In building the v2.6.29
kernel with these options, when all module are disabled,
both global variables are set to 0, and thus we have no
false positives. When we turn all debugging on, we set
both of the globals to all 1s, and thus we have no false
positives in this case either. When one module is en-
abled, we also have no false positives. This is not neces-
sarily true, but is true for v2.6.29 kernel that was tested.
This kernel produced eighty separate modules, and thus
eighty unique sets hashes. We did not compute three
way collisions.

Thus, when no, one, or all modules are enabled we have
no false positives. Even in the case where we do have
a false positive, we do not call through to a function
we simply check the unique variable associated with the
corresponding debug statement.

42 e Dynamic Debug
3 Usage and Examples

3.1 Controlling Dynamic Debug Behavior

The behaviour of pr_debug () and dev_debug ()
are controlled by writing to a control file in the debugfs
filesystem. Thus, you must first mount the debugfs
filesystem, in order to make use of this feature. Sub-
sequently, we refer to the control file as: <debugfs>
/dynamic_debug/control. For example, if you
want to enable printing from source file svescok.c, line
1603 you simply do:

echo ’file svcsock.c line 1603 +p’ >
<debugfs>/dynamic_debug/control

If you make a mistake with the syntax, the write will fail
thus:

echo ’"file svcsock.c blah 1 +p’ >
<debugfs>/dynamic_debug/control
-bash: echo: write error: Invalid argument

3.2 Viewing Dynamic Debug Behavior

Viewing the current configuration is done with a simple
read. See Figure 1

3.3 Command Language Reference

At the lexical level, a command comprises a sequence
of words separated by whitespace characters. Note that
newlines are treated as word separators and do not end
a command or allow multiple commands to be done to-
gether. So these are all equivalent:

echo -c 'file aio.c line 1603 +p’ >
<debugfs>/dynamic_debug/control

echo -c ' file aio.c
<debugfs>/dynamic_debug/control

echo -c 'file aio.c\nline 1603 +p’ >
<debugfs>/dynamic_debug/control

echo -n 'file aio.c line 1603 +p’ >
<debugfs>/dynamic_debug/control

line 1603 +p ' >

Commands are bounded by a write() system call. If you
want to do multiple commands you need to do a separate
"echo" for each:

echo 'file aio.c line 1603 +p’ >
<debugfs>/dynamic_debug/control;\

> echo ’"file svcsock.c line 1563 +p’ >
<debugfs>/dynamic_debug/control

Or even:

(

> echo ’file svcsock.c line 1603 +p’ ;\
> echo ’file svcsock.c line 1563 +p’ ;\
>) > <debugfs>/dynamic_debug/control

At the syntactical level, a command comprises a se-
quence of match specifications, followed by a flags
change specification.

command ::= match-spec* flags—spec

The match-spec’s are used to choose a subset of the
known debug statements to which to apply the flags-
spec. Think of them as a query with implicit ANDs
between each pair. Note that an empty list of match-
specs is possible, but is not very useful because it will
not match any debug statement call sites.

A match specification comprises a keyword, which con-
trols the attribute of the call site to be compared, and a
value to compare against. Possible keywords are:

o match-spec ::="func’ string | ’file’ string | 'module’
string | *format’ string | ’line’ line-range

e [ine-range ::=lineno | ’-’lineno | lineno’-’ | lineno’-
’lineno // Note: line-range cannot contain space,
e.g. // "1-30" is valid range but "1 - 30" is not.

e [ineno ::= unsigned-int

The meanings of each keyword are:

e func. The given string is compared against the
function name of each callsite. Example:

func sve_tcp_accept
o file. The given string is compared against either the

full pathname or the basename of the source file of
each callsite. Examples:

file svcsock.c
file sched.c

2009 Linux Symposium e 43

You can view the currently configured behaviour of all the debug statements via:

cat <debugfs>/dynamic_debug/control
filename:lineno [module]function flags format

fs/sysfs/file.c:147 [file]sysfs_read_file - "%s: count = %zd, ppos = %11d, buf = %$s\012"
fs/sysfs/dir.c:788 [dir]__sysfs_remove_dir - "sysfs %$s: removing dir\012"
fs/sysfs/bin.c:110 [bin]read - "offs = %$11d, xoff = %11d, count = %d\012"
fs/debugfs/inode.c:217 [debugfs]debugfs_create_file - "debugfs: creating file ’%s’\012"

You can also apply standard Unix text manipulation filters to this data, e.g.:

grep -i aio <debugfs>/dynamic_debug/control | wc -1

10

grep -i security <debugfs>/dynamic_debug/control | wc -1
163

Note in particular that the third column shows the enabled behaviour flags for each debug statement call site. The default value,

no extra behaviour enabled, is "-". So you can view all the debug statement call sites with any non-default flags:
[root@mets dynamic_debug]# awk 7$3 != "-"' control

filename:lineno [module]function flags format

fs/aio.c:77 [aiolailo_setup p "aio_setup: sizeof (struct page) = %d\012"
fs/aio.c:222 [aio]__put_ioctx p "__put_ioctx: freeing %p\012"

fs/aio.c:1788 [aiolsys_io_cancel p "calling cancel\012"

fs/aio.c:1698 [aiolsys_io_submit p "EINVAL: io_submit: invalid context id\012"
fs/aio.c:1604 [aio]lio_submit_one p "EINVAL: io_submit: overflow check\012"
fs/aio.c:1594 [aiolio_submit_one p "EINVAL: io_submit: reserve field set\012"
fs/aio.c:1335 [aiolsys_io_destroy p "EINVAL: io_destroy: invalid context id\012"
fs/aio.c:1303 [aio]lsys_io_setup p "EINVAL: io_setup: ctx %lu nr_events %u\012"
fs/aio.c:248 [aiolioctx_alloc p "ENOMEM: nr_events too high\012"

fs/aio.c:1022 [aiolaio_complete p "added to ring %p at [%$1u]l\012"

Figure 1: Viewing current dynamic debug status

e module. The given string is compared against the format “nfsd: SETATTR” // a neater way to match

module name of each callsite. The module name
is the string as seen in “lsmod”, i.e. without the
directory or the .ko suffix and with ‘-’ changed to
‘_’. Examples:

module sunrpc
module nfsd

e format. The given string is searched for in the dy-
namic debug format string. Note that the string
does not need to match the entire format, only some
part. Whitespace and other special characters can
be escaped using C octal character escape notation,
e.g. the space character is

040. Alternatively, the string can be enclosed in
double quote. Examples:

format sverdma: // many of the NFS/RDMA server
dprintks

format readahead // some dprintks in the readahead
cache

a format with whitespace
format ‘nfsd: SETATTR’ // yet another way to
match a format with whitespace

line. The given line number or range of line num-
bers is compared against the line number of each
debug statement call site. A single line number
matches the call site line number exactly. A range
of line numbers matches any call site between the
first and last line number inclusive. An empty first
number means the first line in the file, an empty
line number means the last number in the file. Ex-
amples:

line 1603 // exactly line 1603

line 1600-1605 // the six lines from line 1600 to
line 1605

line -1605 // the 1605 lines from line 1 to line 1605
line 1600- // all lines from line 1600 to the end of
the file

format nfsd: The flags specification comprises a change operation
040SETATTR // one way to match a format with followed by one or more flag characters. The change
whitespace operation is one of the characters:

44 e Dynamic Debug

e - remove the given flags
e + add the given flags

e = set the flags to the given flags

The flags are:

e p Causes a printk () message to be emitted to
dmesg

Note the regexp * [-+=] [p] +$ matches a flags speci-
fication. Note also that there is no convenient syntax to
remove all the flags at once, you need to use “-p”.

3.4 Examples

In the figure 2 below we show two examples, to give a
flavor of the output. The first example shows enabling
all messages. The second example shows enabling kob-
ject module output while the cifs module is loaded.

4 Size and Performance

The kernel used for testing was v2.6.28 compiled for
x86_64. An Intel quad core machine running at 1.6 GHz
with 2GB of RAM was used for all tests.

test case tbench throughput
CONFIG_DYNAMIC_DEBUG disabled | 773.054 MB/sec
CONFIG_DYNAMIC_DEBUG enabled 773.913 MB/sec
CONFIG_DYNAMIC_DEBUG enabled 79.664 MB/sec
and all debug statements enabled

Table 1: performance results

Thus, the run-time cost of having CONFIG_DYNAMIC_
DEBUG enabled, but none of the debug statements print-
ing, is negligible. However, when we enable all of
the debugging statements, the system throughput drops
quite dramatically. Thus, simply converting all of these
high frequency debug statements to printk at KERN_
DEBUG level is not viable. This also suggests that al-
ternate methods for ‘rendering’ the format strings might
be worth investigating. We discuss this further in the
future work section.

In terms of kernel code size growth, the kernel increased
2% when enabling CONFIG_DYNAMIC_DEBUG.

5 More Complex Debugging Statements

Thus far, we’ve looked at debug statements that are bi-
nary - they are either enabled or disabled. However, sev-
eral kernel subsystems have developed more complex
debugging facilities based on ‘levels’ or ‘flags’. The
‘levels’ model is employed by the CPU frequency sub-
system, where messages above a configurable level n
are emitted. Currently, the level is set via module pa-
rameters. Thus, to change the level, one would need to
unload and re-load the CPU frequency modules. The
NFS filesystem uses a ‘flags’ style of debugging, where
each ‘flag’ or bit in an integer toggles on or off a set of
debugging statements.

If we extend the dynamic debug construct somewhat, we
can accommodate both the ‘level” and ‘flags’ debugging
style. For ‘flags’ we can create the following general
function (pseudo-code):

#define debug_enabled_flag
(flag_lbit, subsys_set_bits)
if (normal dynamic debug checks) {
if (flag_bit & subsys_set_bits) {
return 1;
}
}

return 0;

The ‘flag_bit’ refers to the bit associated with this partic-
ular debug statement. The ‘subsys_set_bits’ refers to the
global integer which is associated with this subsystem.
The ‘normal dynamic debug checks’ have the associated
hash bits set corresponding module if any of the flag bits
are set. We can then design a subsystem specific macro
for any subsystem as follows:

#define subsystem_foo_level_debug
(flag_bit, fmt, wva_args)
if (debug_enabled_flag(flag_bit,
subsys_set_bits)) {
print (fmt, wva_args);

Subsystem can thus pass in any subsystem specific print
information. Also, by designing this interface in this
manner, subsystems could easily perform any additional
checks that they wish where the ‘print’ statement is
located. Thus, we can imagine dynamic debug being
used for more than just printing information. We’ve

2009 Linux Symposium e 45

cut -f2 —-d"[" control | cut -fl -d"]" | xargs -i echo ’'module {} +p’ > control

Apr 14 15:17:49 mets kernel: [3883.017536] nf_conntrack:tcp_in_window: START

Apr 14 15:17:49 mets kernel: [3883.017539] nf_conntrack:tcp_in_window: <7>nf_conntrack:seq=376950469
ack=3577053373 sack=3577053373 win=1803 end=376950469

Apr 14 15:17:49 mets kernel: [3883.017549] nf_conntrack:tcp_in_window: sender end=376950469
maxend=376964293 maxwin=115392 scale=6 receiver end=3577053373 maxend=3577168717 maxwin=13824 scale=7
Apr 14 15:17:49 mets kernel: [3883.017555] nf_conntrack:tcp_in_window: <7>nf_conntrack:segq=376950469
ack=3577053373 sack =3577053373 win=1803 end=376950469

Apr 14 15:17:49 mets kernel: [3883.017565] nf_conntrack:tcp_in_window: sender end=376950469
maxend=376964293 maxwin=115392 scale=6 receiver end=3577053373 maxend=3577168717 maxwin=13824 scale=7
Apr 14 15:17:49 mets kernel: [3883.017571] nf_conntrack:tcp_in_window: I=1 II=1 III=1 IV=1

Apr 14 15:17:49 mets kernel: [3883.017577] nf_conntrack:tcp_in_window: res=1 sender end=376950469
maxend=376964293 maxwin=115392 receiver end=3577053373 maxend=3577168765 maxwin=13824

Apr 14 15:17:49 mets kernel: [3883.017582] nf_conntrack:tcp_conntracks: <7>nf_conntrack:syn=0 ack=1

fin=0 rst=0 0l1d=3 new=3

Apr 14 15:17:50 mets kernel: [3883.110062] file:sysfs_read_file:

buf = 00000000,0000000£f

Apr 14 15:17:50 mets kernel: [3883.110116] file:sysfs_read file:

buf = 00000000,00000001

Apr 14 15:17:50 mets kernel: [3883.110164] file:sysfs_read_file:

buf = 00000000,00000005

Apr 14 15:17:50 mets kernel: [3883.110204] file:sysfs_read_file:

buf =1

count = 4096, ppos = 0,
count = 4096, ppos = 0,

count = 4096, ppos = O,

count = 1, ppos = 0,

echo 'module kobject +p’ > /mnt/debugfs/dynamic_debug/control

/sbin/modprobe cifs

Apr 14 15:54:45 mets kernel: [184.968002] kobject:kobject: ’"cifs’ (ffffffffa007e0£0):
kobject_add_internal: parent: ’‘module’, set: ’'module’

Apr 14 15:54:45 mets kernel: [184.970204] kobject:kobject: ’"holders’ (ff££f£880073c34580):
kobject_add_internal: parent: ’"cifs’, set: ’<NULL>'

Apr 14 15:54:45 mets kernel: [184.970225] kobject:kobject: ’'cifs’ (ffffffffal007e0£0):
fill_kobj_path: path = ’/module/cifs’

Apr 14 15:54:45 mets kernel: [184.970267] kobject:kobject: ’'notes’ (ffff880073c34440):
kobject_add_internal: parent: ’‘cifs’, set: ’<NULL>'

Apr 14 15:54:45 mets kernel: [184.970761] kobject:kobject: ’'cifs_inode_cache’ (ff£f880075d230a8) :
kobject_add_internal: parent: ’slab’, set: ’'slab’

Apr 14 15:54:45 mets kernel: [184.970807] kobject:kobject: ’'cifs_inode_cache’ (ff££f880075d230a8):
fill_kobj_path: path = ’/kernel/slab/cifs_inode_cache’

Apr 14 15:54:45 mets kernel: [184.970862] kobject:kobject: ’:0016512" (££££880075d214a8):

kobject_add_internal: parent: ’"slab’, set: ’'slab’

Figure 2: Dynamic debug output examples

recently re-named this work to dynamic debug from
the original dynamic printk, to make this clear. The
above debug_enabled_flag () macro could easily
accommodate the ‘level’ style debugging, by replacing
the bit check with a greater than check. Prototypes have
already implemented and will be proposed in the near
future.

There are a number of modules that set module debug-
ging levels using module parameters Thus, we would
propose system wide ‘standard’ module name parame-
ters that dynamic debug can implement. For example, as
dynamic_debug_level=n, dynamic_debug_flag=0101,
and dynamic_debug=enabled/disabled.

6 Debug Statement Organization

As mentioned at the outset of the work, there are a myr-
iad of styles and macros for debug printing. We pro-
pose that the various subsystems make use of the ‘core’
debugging functions to the extent that they suit their
needs. For example, if you are just printing out text use
pr_debug (), or dev_dbg () if you are in a driver.
If you are doing ‘flag’ or ‘level’ style debugging use the
corresponding dynamic debug macros. For example, in
kernel/module.c, DEBUGP () is used. We should con-
vert it to pr_debug () so that it can tie into the dy-
namic debug infrastructure.

The question also becomes when should one use pr_
debug () and when should printk (KERN_DEBUG)

46 e Dynamic Debug

be used? Obviously, given the test results posted one can
not simply sprinkle printk (KERN_DEBUG) every-
where. Thus, for frequently used codepaths need to use
pr_debug (). Additionally, now that pr_debug ()
can be compiled in, pr_devel () canbe used for those
cases where you wouldn’t want dynamic debug to pick
up the debug statement.

7 Future Work

Clearly, converting more kernel code to use the standard
debug statements of pr__debug () and dev_dbg () is
desired. Further, along these lines would be converting
subsystems that have more complex debugging styles to
the proposed framework. Also, adding command line
control parameters, module parameters, and a simple
enable and disable all debug statements control mode
would be desirable.

As mentioned in the results section, when all the debug
statements are enabled, the system performance drops
significantly. Although, this is not the ‘hot path’, it
might be nice to improve this case. By simply attach-
ing the backend of these patches to the new ring buffer
code we should drastically speed things up. Perhaps, its
an option as I think getting the information out via the
normal printk path is important as well. There might
also be a chance for further integration with Ftrace code
specifically the event code[7].

8 Conclusion

‘Dynamic Debug’ has successfully made high frequency
debug statements available at run-time in a manner that
does not degrade performance. It has already been used
by SGI to help resolve NFS problems, and it is planned
to be incorporated into upcoming enterprise kernel re-
leases. We hope that this paper will further understand-
ing of this new feature, in hopes that it can be further
adopted and expanded.

9 Acknowledgements

SGI independently developed a very similar debugging
system which tied into dprintk() and has been used for
a number of years to help diagnose customer issues[1].
Greg Banks submitted this work upstream shortly after
I submitted the dynamic debug work. Dynamic debug

owes its control language to this work. Section 3, Usage
and Examples, is largely taken from the documentation
that Greg Banks wrote for the dprintk() work.

References

[1] Greg Banks. activate & deactivate dprintks
individually and severally. http://marc.info/
?1=linux-kernel&m=123241522202638&w=2.

[2] Pei Cao. Bloom filters - the math.
http://pages.cs.wisc.edu/~cao/papers/
summary-cache/node8.html.

[3] Frank Ch. Eigler. Problem solving with systemtap. In
Proceedings of the Ottawa Linux Symposium 2006,
2006.

[4] Greg Kroah-Hartman Jonathan Corbet,
Alessandro Rubini. Linux Device Drivers. O’Reilly,
2005. ISBN 0-596-00590-3.

[5] Michel Dagenais Mathieu Desnoyers. Lttng: Tracing
across execution layers, from the hypervisor to
user-space. In Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[6] Steve Rostedt. ftrace tracing inftrastructure.
http://lwn.net/Articles/270971/.

[7] Steven Rostedt. event tracer. http://marc.info/
?l=linux-kernel&m=123550413414913&w=2.

Proceedings of the
Linux Symposium

July 13th—17th, 2009
Montreal, Quebec
Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP

Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron

Chris Dukes, workfrog.com
Jonas Fonseca

John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

